(二) DTA和DTG分析
从硅烷(KH-550)改性水镁石的DTA曲线上(图2),发现在290~360℃之间出现一完缓的放热峰,相对应的TG曲线出现较明显的失重台阶,该区间的放热效应和热失重是由水镁石表面包覆的硅烷燃烧所致 。硅烷(KH-550)的闪点为96.1℃,在改性料中燃烧开始放热,温度延续到290℃,说明硅烷与水镁石发生了化学键合作用 。
图1 钛酸酯改性样与水镁石原样红外光谱对比
1—水镁石原样;2—0.5%钛酸酯改性水镁石(200目);3—0.5%钛酸酯改性水镁石(超细)
图2 硅烷改性FB的TG-DTA曲线
在硬脂酸(正十八烷酸)改性水镁石(图3和图4)的DTA曲线上,60~200℃间的吸热谷(最大吸热温度110℃)为包覆于水镁石表面的硬脂酸熔化的结果(硬脂酸熔点69.6℃),在285~410℃间有一很强的放热峰(336℃),为硬脂酸燃烧放热,在510~530℃之间出现明显吸热谷,可能与水镁石分解过程中的次级相变有关 。由此DTA曲线可以看出,硬脂酸与水镁石表面发生较好的包覆作用 。
图3 1.5%硬脂酸改性FB(200目)的TG-DTA曲线
图4 2%硬脂酸(纯固体)改性FB(超细)的TG-DTA曲线
三、纤维水镁石基抗菌剂
通过对不同水镁石粉体的抗菌性能检测表明,块状水镁石的一般粉体和超细粉体对试验菌种没有抗菌效果;天然纤维水镁石粉体具有较强的抗菌性能,且其超细粉体比一般粉体的抗菌性能要强;对于改性块状水镁石的超细粉体而言,由于超细粉体具有较大的比表面积和表面能,对Cu2+、Zn2+具有一定的吸附性能,即改性后的超细粉体表面黏附有Cu2+、Zn2+,因此对试验菌种表现出一定的抗菌性能,但灭菌率较低[6,7];改性纤维水镁石的超细粉体具有很强的抗菌性能,相对未改性的纤维水镁石的超细粉体而言,灭菌率有一定程度的提高 。这主要是由于纤维水镁石的超细粉体和Cu2+、Zn2+本身具有的抗菌性协同抗菌,即存在协同抗菌效应 。
(一)纤维水镁石/聚丙烯抗菌塑料
1.抗菌剂添加量对PP力学性能的影响
纤维水镁石基抗菌剂填充PP的力学性能测试结果列于表1,在PP中加入10%的纤维水镁石抗菌剂对PP的力学性能改善作用,即在 PP 塑料中添加纤维水镁石后,纤维水镁石能对 PP 起补强作用[8,9] 。
表1 纤维水镁石基抗菌剂填充PP 力学性能测试结果
2.抗菌剂添加量对PP抗菌性能的影响
从纤维水镁石基抗菌剂填充PP的抗菌性能测试结果可以看出,对于同一纤维水镁石基抗菌剂填充PP,其对大肠杆菌的抑菌率都要强于对金黄色葡萄球菌的[10] 。当抗菌母粒(抗菌剂)添加量逐步增加时,水镁石-PP抗菌塑料对大肠杆菌和金黄色葡萄球菌的抑菌率都有一定程度的提高 。当抗菌母粒添加量为15%时,纤维水镁石基抗菌剂填充PP对大肠杆菌抑菌率最高单体可达到85.7% 。在同样的添加量下,Cu2+-Zn2+复合型斜发沸石基抗菌剂对PP塑料的抗菌性能影响较Cu2+型和Zn2+型要强 。结合纤维水镁石基抗菌剂填充PP力学性能测试结果可知,在制备斜发沸石基抗菌剂填充PP时,适宜添加10%的Cu2+-Zn2+复合斜发沸石基抗菌母粒[11,12] 。
四、多功能纤维水镁石阻燃母粒
(一)纤维水镁石阻燃剂的阻燃效果试验
1.纤维水镁石阻燃剂的加入对聚丙烯(PP)机械性能的影响
限制ATH及人工合成氢氧化镁大量加入的主要因素是复合材料的机械性能降低,除添加型阻燃剂的添加量必须很大外,还受到机械性能、相容性、稳定性等其他因素的制约[13,14] 。但是纤维水镁石阻燃剂是纤维状的,它在复合材料中能起到增强作用 。因此,纤维水镁石阻燃剂加入使PP的硬度、抗拉强度、拉伸率(变形量)、密度均有变化 。
(1)FB及改性FB的添加量对熔体流动速率的影响
添加FB及改性FB之后,PP的熔体流动速率均有下降,且其下降速度随添加量的增加而增大 。FB的添加量为16.4%时,熔体流动速率下降较小的次序分别是P-FB、FB、K-FB 和N-FB,在37.4%以下时,降幅较慢的是 P-FB,而在37.4%以上时,降幅较快的也是 P-FB,当添加量为49.9%时,熔体流动速率变得很小 。添加量在37.4%以下时,PL改性FB的效果最好[15,16] 。
(2)FB及改性FB添加量对拉伸强度的影响
FB及改性FB添加量在16.4%时PP的抗拉强度均有所增加,FB、K-FB、N-FB和P-FB填充的PP的抗拉强度分别增加 3.7%,5.2%,5.0% 和 5.2%;在 28.5% 时,分别是 2.4%,4.2%,-0.8%和0.8%,说明纤维水镁石填充量在30%以下时,具有一定的增强效果 。当添加量大于28.5%时,抗拉强度均有所下降,但降幅较小 。